Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.811
Filtrar
1.
J Biol Chem ; 299(6): 104777, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142222

RESUMO

Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Mycobacterium tuberculosis , Fatores de Transcrição , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estrutura Quaternária de Proteína , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Fish Shellfish Immunol ; 134: 108639, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36841518

RESUMO

High temperature is a main cause to result in the outbreak of tilapia streptococcal disease. However, the underlying mechanisms are not well understood. In this study, we first confirmed that tilapia infected with Streptococcus agalactiae (S. agalactiae) had a higher mortality at high temperature (35 °C) than that at normal temperature (28 °C). Subsequently, the effects of high temperature on gene expression pattern of S. agalactiae and intestinal microbiota of tilapia were respectively detected by RNA-seq and 16S rDNA sequencing. RNA-seq identified 357 differentially expressed genes (DEGs) in S. agalactiae cultured at 28 °C and 35 °C. GO and KEGG analysis showed that these DEGs were highly involved in metabolic processes, including glucose, lipid and amino acid metabolisms, which indicates that S. agalactiae have stronger vitality and are likely to be more infectious under high temperature. Microbiota analysis revealed that high temperature could influence the bacterial community composition of tilapia intestine, accompanied by changes in intestinal structure. Compared to feed at 28 °C, the total bacterial species as well as pathogens, such as norank_f__Rhizobiales_Incertae_Sedis, Pseudorhodoplanes, Ancylobacter, in tilapia intestine were significantly increased at 35 °C, which may weaken the immune resistance of tilapia. Taken together, our results suggest that high temperature evoked tilapia susceptible to S. agalactiae should be the combined effect of enhanced S. agalactiae metabolism and dysregulated tilapia intestinal microbiota.


Assuntos
Surtos de Doenças , Doenças dos Peixes , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Infecções Estreptocócicas , Streptococcus agalactiae , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Tilápia , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Biodiversidade , Animais
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131853

RESUMO

Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein-based c-di-GMP-sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds' timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes' timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transdução de Sinais/fisiologia , GMP Cíclico/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Vidro , Concentração de Íons de Hidrogênio , Sistemas do Segundo Mensageiro/fisiologia , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145026

RESUMO

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bile/metabolismo , Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia
5.
PLoS Pathog ; 18(1): e1010170, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986198

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5' untranslated region (5' UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5' UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Ribossômicas/metabolismo , Transativadores/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Regiões 5' não Traduzidas , Células HeLa , Humanos , Pseudomonas aeruginosa/metabolismo , Transcrição Gênica , Virulência/fisiologia , Fatores de Virulência/metabolismo
6.
World J Microbiol Biotechnol ; 38(3): 50, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35098381

RESUMO

Avilamycin, an excellent growth-promoting feed additive, produced by Streptomyces viridochromogenes, was widely used to promote the growth of poultry by inhibiting Gram-positive bacteria. In this work, the methods of combinational mutagenesis of UV (Ultraviolet) and ARTP (Atmospheric and room temperature plasma), and rational screening by high concentrations of CaCl2 were utilized to promote the production of avilamycin. The avilamycin high-yielding mutant strains of Z-6 (29.31 mg/L), A-9 (36.84 mg/L) and F-23 (45.73 mg/L) were screened out, with yields of avilamycin improved by 57.92%, 98.49% and 146.39%, respectively, compared with the wild strain (WT). The performance comparison showed that Z-6, A-9 and F-23 mutant strains had stronger abilities of substrate consumption, cell growth and antibiotic synthesis than WT. Furthermore, the composition of fermentation medium, inoculation parameters, supplementation strategies of oxygen vectors, glucose and precursors (L-valine, D-xylose and sodium acetate) had been optimized and the avilamycin yield of the mutant strain F-23 was significantly enhanced by 41.87% by fermentation optimization. In summary, the strategy of increasing the production of avilamycin in S. viridochromogenes in this work might provide an alternative method to enhance the synthesis of secondary metabolites in other Streptomyces.


Assuntos
Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Oligossacarídeos/metabolismo , Streptomyces/metabolismo , Técnicas Bacteriológicas , Fermentação , Mutagênese , Streptomyces/genética
7.
World J Microbiol Biotechnol ; 38(3): 49, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35098385

RESUMO

The surface of aboveground plant parts, known as the phyllosphere, is a habitat for various microorganisms called epiphytes establishing biotrophic interactions with their hosts. However, these communities can be affected by environmental and anthropogenic variations such as the application of agrochemicals. Thus, epiphytes have the capacity to survive in such environments. In this study, we obtained the genome of Pseudomonas sp. 14A, an epiphyte isolated from the pepper phyllosphere. The phylogenomic analyses suggested that Pseudomonas sp. 14A may be novel species closely related to P. moraviensis R28-S. Notably, the metabolic pathways proposed consistent with epiphytic lifestyle in Pseudomonas sp. 14A, were shared with other species displaying a different degree of phylogenetic relatedness. Furthermore, variations in configuration of metabolic gene clusters were observed, that could expand microbial metabolic diversity in close relatedness species, highlighting the relevance of microbial diversity associated with plants.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Pseudomonas/genética , Pseudomonas/metabolismo , Adaptação Fisiológica , DNA Bacteriano/genética , Estudo de Associação Genômica Ampla , Filogenia , Especificidade da Espécie
8.
Elife ; 112022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080493

RESUMO

Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , RNA Antissenso/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endopeptidase Clp/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , RNA Antissenso/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Fatores de Transcrição/metabolismo , Virulência
9.
Nat Chem Biol ; 18(2): 161-170, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931064

RESUMO

Multi-enzyme assemblies composed of metabolic enzymes catalyzing sequential reactions are being increasingly studied. Here, we report the discovery of a 1.6 megadalton multi-enzyme complex from Bacillus subtilis composed of two enzymes catalyzing opposite ('counter-enzymes') rather than sequential reactions: glutamate synthase (GltAB) and glutamate dehydrogenase (GudB), which make and break glutamate, respectively. In vivo and in vitro studies show that the primary role of complex formation is to inhibit the activity of GudB. Using cryo-electron microscopy, we elucidated the structure of the complex and the molecular basis of inhibition of GudB by GltAB. The complex exhibits unusual oscillatory progress curves and is necessary for both planktonic growth, in glutamate-limiting conditions, and for biofilm growth, in glutamate-rich media. The regulation of a key metabolic enzyme by complexing with its counter enzyme may thus enable cell growth under fluctuating glutamate concentrations.


Assuntos
Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Sintase/metabolismo , Ácido Glutâmico/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias , Glutamato Desidrogenase/genética , Glutamato Sintase/genética
10.
Nat Chem Biol ; 18(2): 142-151, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34903851

RESUMO

Protein lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to play a critical role in the regulation of cellular processes. However, the mechanism and functional consequence of Khib in prokaryotes remain unclear. Here we report that TmcA, an RNA acetyltransferase, functions as a lysine 2-hydroxyisobutyryltransferase in the regulation of transcription. We show that TmcA can effectively catalyze Khib both in vitro and intracellularly, and that R502 is a key site for the Khib catalytic activity of TmcA. Using quantitative proteomics, we identified 467 endogenous candidates targeted by TmcA for Khib in Escherichia coli. Interestingly, we demonstrate that TmcA can specifically modulate the DNA-binding activity of H-NS, a nucleoid-associated protein, by catalysis of Khib at K121. Furthermore, this TmcA-targeted Khib regulates transcription of acid-resistance genes and enhances E. coli survival under acid stress. Our study reveals transcription regulation mediated by TmcA-catalyzed Khib for bacterial acid resistance.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Acetiltransferases/genética , Ácidos , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estresse Fisiológico , Transcrição Gênica , Transcriptoma
11.
J Bacteriol ; 204(1): e0029721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723645

RESUMO

Pseudomonas aeruginosa, an opportunistic bacterial pathogen, can synthesize and catabolize several small cationic molecules known as polyamines. In several clades of bacteria, polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, l-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or occurs through a metabolic derivative. Here, we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that l-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation but did so by a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and l-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor, arginine, promote biofilm and c-di-GMP synthesis in P. aeruginosa. IMPORTANCE Biofilm formation allows bacteria to physically attach to a surface, confer tolerance to antimicrobial agents, and promote resistance to host immune responses. As a result, the regulation of biofilm formation is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switch that favors chronic infection.


Assuntos
Arginina/farmacologia , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Putrescina/farmacologia , GMP Cíclico/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Regulação para Cima
12.
J Bacteriol ; 204(1): e0035321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748388

RESUMO

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectrometria de Massas/métodos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia
13.
J Bacteriol ; 204(1): e0046421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748387

RESUMO

The Tol-Pal system of Gram-negative bacteria helps maintain the integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In Escherichia coli, the five Tol-Pal proteins (TolQ, -R, -A, and -B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB, and Pal also requires the presence of TolQ and/or TolA, the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN indirectly attracts both proteins and that PBP1A, PBP1B, and CpoB are dispensable for their septal recruitment. However, the ß-lactam aztreonam readily interferes with the septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can separately recognize division sites. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI requires TolQ and that of TolAIII requires a combination of TolB, Pal, and CpoB. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over 30 distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining the integrity of the outer membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.


Assuntos
Citocinese/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Aztreonam/farmacologia , Citocinese/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia
14.
J Bacteriol ; 204(1): e0041821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780302

RESUMO

The transcriptomes of Pseudomonas aeruginosa clone C isolates NN2 and SG17M during the mid-exponential and early stationary phases of planktonic growth were evaluated by direct RNA sequencing on the nanopore platform and compared with established short-read cDNA sequencing on the Illumina platform. Fifty to ninety percent of the sense RNAs turned out to be rRNA molecules, followed by similar proportions of mRNA transcripts and noncoding RNAs. The two platforms detected similar proportions of uncharged tRNAs and 29 yet-undescribed antisense tRNAs. For example, the rarest arginine codon was paired with the most abundant tRNAArg, and the tRNAArg gene is missing for the most frequent arginine codon. More than 90% of the antisense RNA molecules were complementary to a coding sequence. The antisense RNAs were evenly distributed in the genomes. Direct RNA sequencing identified more than 4,000 distinct nonoverlapping antisense RNAs during exponential and stationary growth. Besides highly expressed small antisense RNAs less than 200 bases in size, a population of longer antisense RNAs was sequenced that covered a broad range (a few hundred to thousands of bases) and could be complementary to a contig of several genes. In summary, direct RNA sequencing identified yet-undescribed RNA molecules and an unexpected composition of the pools of tRNAs and sense and antisense RNAs. IMPORTANCE Genome-wide gene expression of bacteria is commonly studied by high-throughput sequencing of size-selected cDNA fragment libraries of reverse-transcribed RNA preparations. However, the depletion of rRNAs, enzymatic reverse transcription, and the fragmentation, size selection, and amplification during library preparation lead to inevitable losses of information about the initial composition of the RNA pool. We demonstrate that direct RNA sequencing on the Nanopore platform can overcome these limitations. Nanopore sequencing of total RNA yielded novel insights into the Pseudomonas aeruginosa transcriptome that-if replicated in other species-will change our view of the bacterial RNA world. The discovery of sense-antisense pairs of transfer-messenger RNA (tmRNA), tRNAs, and mRNAs indicates a further and unknown level of gene regulation in bacteria.


Assuntos
Sequenciamento por Nanoporos/métodos , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/metabolismo , Transcriptoma , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética
15.
J Bacteriol ; 204(1): e0034721, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662238

RESUMO

Cells can use self recognition to achieve cooperative behaviors. Self-recognition genes are thought to principally evolve in tandem with partner self-recognition alleles. However, other constraints on protein evolution could exist. Here, we have identified an interaction outside self-recognition loci that could constrain the sequence variation of a self-recognition protein. We show that during collective swarm expansion in Proteus mirabilis, self-recognition signaling co-opts SdaC, a serine transporter. Serine uptake is crucial for bacterial survival and colonization. Single-residue variants of SdaC reveal that self recognition requires an open conformation of the protein; serine transport is dispensable. A distant ortholog from Escherichia coli is sufficient for self recognition; however, a paralogous serine transporter, YhaO, is not. Thus, SdaC couples self recognition and serine transport, likely through a shared molecular interface. Self-recognition proteins may follow the framework of a complex interaction network rather than an isolated two-protein system. Understanding the molecular and ecological constraints on self-recognition proteins lays the groundwork for insights into the evolution of self recognition and emergent collective behaviors. IMPORTANCE Bacteria can receive secret messages from kin during migration. For Proteus mirabilis, these messages are necessary for virulence in multispecies infections. We show that a serine transporter, conserved among gammaproteobacteria, enables self-recognition. Molecular co-option of nutrient uptake could limit the sequence variation of these message proteins. SdaC is the primary transporter for l-serine, a vital metabolite for colonization during disease. Unlike many self-recognition receptors, SdaC is sufficiently conserved between species to achieve recognition. The predicted open conformation is shared by transport and recognition. SdaC reveals the interdependence of communication and nutrient acquisition. As the broader interactions of self-recognition proteins are studied, features shared among microbial self-recognition systems, such as those of Dictyostelium spp. and Neurospora spp., could emerge.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteus mirabilis/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Locomoção , Proteínas de Membrana/genética , Proteus mirabilis/genética
16.
J Bacteriol ; 204(1): e0020821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662237

RESUMO

Organismal adaptations to environmental stimuli are governed by intracellular signaling molecules such as nucleotide second messengers. Recent studies have identified functional roles for the noncanonical 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) in both eukaryotes and prokaryotes. In Escherichia coli, 2',3'-cNMPs are produced by RNase I-catalyzed RNA degradation, and these cyclic nucleotides modulate biofilm formation through unknown mechanisms. The present work dissects cellular processes in E. coli and Salmonella enterica serovar Typhimurium that are modulated by 2',3'-cNMPs through the development of cell-permeable 2',3'-cNMP analogs and a 2',3'-cyclic nucleotide phosphodiesterase. Utilization of these chemical and enzymatic tools, in conjunction with phenotypic and transcriptomic investigations, identified pathways regulated by 2',3'-cNMPs, including flagellar motility and biofilm formation, and by oligoribonucleotides with 3'-terminal 2',3'-cyclic phosphates, including responses to cellular stress. Furthermore, interrogation of metabolomic and organismal databases has identified 2',3'-cNMPs in numerous organisms and homologs of the E. coli metabolic proteins that are involved in key eukaryotic pathways. Thus, the present work provides key insights into the roles of these understudied facets of nucleotide metabolism and signaling in prokaryotic physiology and suggest broad roles for 2',3'-cNMPs among bacteria and eukaryotes. IMPORTANCE Bacteria adapt to environmental challenges by producing intracellular signaling molecules that control downstream pathways and alter cellular processes for survival. Nucleotide second messengers serve to transduce extracellular signals and regulate a wide array of intracellular pathways. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified as contributing to the regulation of cellular pathways in eukaryotes and prokaryotes. In this study, we define previously unknown cell processes that are affected by fluctuating 2',3'-cNMP levels or RNA oligomers with 2',3'-cyclic phosphate termini in E. coli and Salmonella Typhimurium, providing a framework for studying novel signaling networks in prokaryotes. Furthermore, we utilize metabolomics databases to identify additional prokaryotic and eukaryotic species that generate 2',3'-cNMPs as a resource for future studies.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Nucleotídeos Cíclicos/metabolismo , Salmonella typhimurium/enzimologia , Proteínas de Bactérias/genética , Biofilmes , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos , Resposta ao Choque Térmico , Peróxido de Hidrogênio , Óperon , RNA Bacteriano , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
17.
J Bacteriol ; 204(1): e0020621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662239

RESUMO

Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. c-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by Escherichia coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP- and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference for the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Listeria monocytogenes/enzimologia , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Mutação , Diester Fosfórico Hidrolases/genética , Fatores de Virulência
18.
J Bacteriol ; 204(1): e0045021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662241

RESUMO

Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contributes to their functional differences in a Salmonella enterica host.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/farmacologia , Ácidos Cetoglutáricos/metabolismo , Piridoxal/metabolismo , Saccharomyces cerevisiae/química , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose , Ácidos Cetoglutáricos/farmacologia , Redes e Vias Metabólicas/fisiologia , Mutação , Piridoxal/farmacologia
19.
J Bacteriol ; 204(1): e0039821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633868

RESUMO

Stenotrophomonas maltophilia has recently arisen as a prominent nosocomial pathogen because of its high antimicrobial resistance and ability to cause chronic respiratory infections. Often the infections are worsened by biofilm formation which enhances antibiotic tolerance. We have previously found that mutation of the gpmA gene, encoding the glycolytic enzyme phosphoglycerate mutase, impacts the formation of this biofilm on biotic and abiotic surfaces at early time points. This finding, indicating an association between carbon source and biofilm formation, led us to hypothesize that metabolism would influence S. maltophilia biofilm formation and planktonic growth. In the present study, we tested the impact of various growth substrates on biofilm levels and growth kinetics to determine metabolic requirements for these processes. We found that S. maltophilia wild type preferred amino acids versus glucose for planktonic and biofilm growth and that gpmA deletion inhibited growth in amino acids. Furthermore, supplementation of the ΔgpmA strain by glucose or ribose phenotypically complemented growth defects. These results suggest that S. maltophilia shuttles amino acid carbon through gluconeogenesis to an undefined metabolic pathway supporting planktonic and biofilm growth. Further evaluation of these metabolic pathways might reveal novel metabolic activities of this pathogen. IMPORTANCE Stenotrophomonas maltophilia is a prominent opportunistic pathogen that often forms biofilms during infection. However, the molecular mechanisms of virulence and biofilm formation are poorly understood. The glycolytic enzyme phosphoglycerate mutase appears to play a role in biofilm formation, and we used a mutant in its gene (gpmA) to probe the metabolic circuitry potentially involved in biofilm development. The results of our study indicate that S. maltophilia displays unique metabolic activities, which could be exploited for inhibiting growth and biofilm formation of this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Redes e Vias Metabólicas/fisiologia , Stenotrophomonas maltophilia/fisiologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Proteínas de Bactérias/genética , Meios de Cultura , Ribose/metabolismo , Ribose/farmacologia , Stenotrophomonas maltophilia/genética
20.
J Bacteriol ; 204(1): e0037621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633867

RESUMO

Pathogenic bacteria have acquired a vast array of eukaryotic-protein-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotAM), which contains the second OTU domain. LotAM consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotAM with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotAM and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotAM. The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the "helical arm" is essential for the enzymatic activity of LotAM. The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the "helical arm" structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. IMPORTANCE To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila. LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotAM), which includes OTU2. LotAM consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/enzimologia , Ubiquitina/metabolismo , Proteínas de Bactérias/genética , Cristalização , Enzimas Desubiquitinantes/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...